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The starting transients in time-stepping Finite Element Method (FEM) are an issue when we are interested in steady state 

waveforms to compute the copper and magnetic losses. The time required to reach the steady-state currents can be very long with a 
voltage supply of the windings. However, if the initial state variables are known, there are no starting transient. This paper presents an 
efficient method to compute the initial conditions required for a FEM steady-state analysis. The method exploits a high order coupled 
circuit model where self and mutual inductances are identified by linear magnetostatic FEM. The simulations with this model are very 
fast and we can evaluate the steady-state currents of an induction machine, in a few seconds.  Each massive conductor in the rotor must 
be split in several circuits to approximate the skin effect. The initial current and rotor position values are then applied to the FEM 
magnetodynamic simulation and it is possible to obtain the steady-state results with the simulation of only one period. The steady state 
computation method is validated by the study of a railway bogie made of two 350 HP induction traction motors supplied by the same 
GTO voltage inverter. 
 

Index Terms— AC Machines, Finite element analysis, Motor drives, Power systems transients.  
 

I. INTRODUCTION 
HE MODELLING METHODS using a time stepping simulation 
for the finite element analysis of cage induction motor fed 

by static frequency converters are well-known [1], [2]. The 
main problem is generally the long simulation time required to 
perform a steady state analysis. The initial transients (currents, 
torque, etc) are difficult to avoid since we do not know the 
initial motor state. Depending on the rotor squirrel cage 
material (copper vs aluminum), electrical time constants can 
reach several seconds. When the speed is fixed, there are large 
torque and current oscillations in the transient mode. We have 
to wait for the steady-state operation in order to compute 
efficiency and motor losses. The FE simulation time then 
becomes unacceptable as it may take several hours to obtain a 
single steady state operation point. In order to reduce the 
simulation time, some authors proposed to initialize the 
simulation with a sinusoidal voltage waveform at initial states 
and then apply a custom variable time-stepping method with 
the PWM voltage [3]. This method is efficient only when the 
PWM frequency is high and the current ripple is small. 

In this paper, we present a fast method to estimate the 
steady-state motor operation based on the identification of a 
coupled circuit. First, we neglect the magnetic saturation and 
we compute the self and mutual inductances of all coupled 
circuits in magnetostatic with a 2D FE method for different 
rotor positions [4]. Then, using Matlab-Simulink, we rapidly 
solve the coupled circuits including the external connections. 
All steady state currents are obtained in few seconds. The 
values of the steady state currents and rotor initial position are 
then applied in the FE model. Finally, to determine the initial 
motor state, a magnetostatic computation is performed before 
starting the simulation with the inverter voltage waveforms.  

This method has been developed to analyse the steady state 
operation of a railway bogie made of two 350 HP induction 
traction motors supplied by the same GTO voltage inverter. 
The squirrel rotor cage is made with large section of 

rectangular copper bars (Fig.1). Comparisons of the current 
waveforms have been used to validate the steady state model.  

II. COUPLED CIRCUIT MODEL 
A coupled circuit is a simplified approach that can be 

applied to machines analysis [4]. The coupling between the 
windings is expressed with inductances when magnetic 
saturation is neglected. The behavior of an induction motor 
can be modelled by considering several electrical circuits; one 
per each stator phase and several per each rotor bar. Indeed, 
each massive bar must be modelled using several elementary 
circuits carrying different currents. Circuits of a same bar are 
connected in parallel. Such method can estimate the 
circulating current inside the real bar. 

One can also add external circuit connexions as rotor end-
ring and stator winding arrangement (star or delta). Each 
electrical circuit is modeled by a resistance and several 
inductances that depend on the angular rotor position θ.  

[𝑉] = [𝑅][𝐼] +
𝑑{[𝐿(𝜃)][𝐼]}

𝑑𝑑  (1)   

The current response is computed by (2) assuming that the 
voltage of each rotor bar is null. This equation is a bit more 
complex if we consider the end-ring circuit [4].  

𝑑[𝐼]
𝑑𝑑

= [𝐿(𝜃)]−1. �[𝑉] − �[𝑅] + Ω
d[L(θ)]

dθ𝑚
� [𝐼]� (2)   

 
Fig. 1. 350 HP Railway traction motor (rotor & stator). 
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III. INDUCTANCE CURVES IDENTIFICATION 
The considered motor (Fig.1) has three stator phases, 60 

stator slots and 52 rotor copper bars. It has a periodicity on 
half the machine domain.  For this traction motor application, 
we used 3 circuits for each bar. Each massive rotor bar was 
divided into three equal sections. It is assumed that the current 
density in each section is constant. Consequently, the FE 
method has been used to evaluate the flux linkage between 81 
windings (3 stator phases and 78 parts of rotor bars on half 
rotor domain) with linear magnetostatic simulations for 180 
discrete rotor positions (1 position per mechanical degrees). 
There are 180 tables of 81x81 elements to identify.  

To minimize the time of the inductance identification, it is 
more efficient to use a Gauss elimination method for the 
matrix inversion. All winding sources are in the second 
member and the identification problem is solved with only one 
matrix inversion per each rotor position.  

IV. COMPUTATION WITH THE COUPLED MODEL 
The coupled model is solved using classical integration 

techniques with a variable time-step and linear interpolation 
inside the inductance curves for any rotor position [4].  

The simulation is performed with Matlab-Simulink by 
supplying the experimental voltage waveforms on the machine 
terminals. This simulation can be done in 60s for 1s of real 
working time. Fig.2 shows the current transients in the 3 
circuits of a same rotor bar and a comparison of the total bar 
current with the result of FE simulation taking account of the 
skin effect. One can verify that the current transients in the 3 
sections are different and this justifies the use of the 3 circuits 
per each bar. Such circuit configuration provides a very good 
estimation of the total current waveform and is highly efficient 
to take account of slot harmonics [4]. 

 
Fig. 2. Rotor bar currents in different parts of a same bar and comparison of 
the total current in a bar with the FE simulation 

V.   STEADY STATE SIMULATIONS WITH 2D FE MODEL  
The initial conditions (81 values of current and one rotor 

position) for the FE simulation are known and we can perform 
a magnetostatic simulation to compute the initial magnetic 
solution (magnetic potential in the nodes). This initial solution 
is used to start the time-stepping FEM without transient. 

Fig. 4 presents the first period of the inverter current 
waveforms (total of 2 motors) obtained at high speed with 
full-wave voltage (Fig. 3). Fig. 6 is also the first period of the 
current shapes at low speed with the experimental PWM 
voltage waveforms of Fig. 5. There are no transients and the 
steady state shape is quite well preserved. The losses are easily 
estimated with only one simulation period (stator or rotor). 

Consequently, the proposed method is really interesting as it 
ensures a fast steady state analysis with transient FEM. 

 
Fig. 3. Experimental line to line stator voltage at high speed (2555 rpm). 

 

 
Fig. 4. Comparison of total bogie current waveforms (2555 rpm).   

 

 
Fig. 5. Experimental line to line stator voltage at low speed (535 rpm). 

 

 
Fig. 6. Comparison of total bogie current waveforms (535 rpm).   

REFERENCES 
[1] A. Arkkio, “Finite Element Analysis of cage induction motors fed by 

static frequency converters,” IEEE Trans. Magn., vol.26, No. 2, pp. 551-
554, March 1990. 

[2] T.H. Pham, P.F. Wendling, S.J. Salon, H. Acikgoz, “Transient Finite 
Element Analysis of an induction motor with external circuit connec-
tions and electromechanical coupling,”  IEEE Trans. Magn., vol.14, No. 
4, pp. 1407-1412, December 1999. 

[3] JJ. Lee, Y.K. Kim, H. Nam, K.H. Ha, J.P. Hong, D.H. Hwang, “Loss 
distribution of three-phase induction motor fed by pulsewidth-modulated 
inverter,”  IEEE Trans. Magn., vol.40, No. 2, pp. 762-765, March 2004. 

[4] J. Mathault, M. Bergeron, S. Rakotovololona, J. Cros, P. Viarouge, 
“Influence of discrete inductance curves on the simulation of a round ro-
tor generator using coupled circuit method,” Electrimacs’2014 conf.,  
Valencia, 19-22 May 2014. 

-20

-15

-10

-5

0

5

10

0 0.1

Ba
r s

ec
tio

n 
cu

rr
en

ts
  (

kA
)  

 

Times(s)

Ibar1.1
Ibar1.2
Ibar1.3

Coupled -circuit

-20

-15

-10

-5

0

5

10

0 0.1

To
ta

l c
ur

re
nt

 in
 b

ar
1 

(k
A)

Times (s)

Coupled-circuit
FE model

Itot = Ibar1.1+Ibar1.2+Ibar1.3

-1500

-1000

-500

0

500

1000

1500

0 0.005 0.01 0.015 0.02

Lin
e 

to
 li

ne
  v

ol
ta

ge
 [V

] 

Time [s]

Vca
Vab

-800

-600

-400

-200

0

200

400

600

800

0 0.005 0.01 0.015 0.02

To
ta

l B
og

ie
 cu

rre
nt

 (2
 m

ot
or

s) 
[A

]

Time [s]

Experiment

Simulation

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 0.01 0.02 0.03 0.04 0.05 0.06

Lin
e 

to
 li

ne
 p

ha
se

 vo
lta

ge
 [V

]

Time [s]

Vca
Vab

-500

-250

0

250

500

0 0.01 0.02 0.03 0.04 0.05 0.06

To
ta

l B
og

ie
 C

ur
re

nt
 [A

]

Time [s]

Experiment
Simulation


	I. Introduction
	II. Coupled circuit Model
	III. Inductance curves identification
	IV. Computation with the coupled model
	V.   Steady state simulations with 2D FE model
	References

